

Carbohydrate Research 291 (1996) 209-216

Note

Structure determination of the O-antigen polysaccharide from the enteroinvasive *Escherichia coli* (EIEC) O143 by component analysis and NMR spectroscopy

Clas Landersjö ^a, Andrej Weintraub ^b, Göran Widmalm ^{a,*}

Received 9 May 1996; accepted 7 June 1996

Keywords: Escherichia coli; Shigella boydii; Lipopolysaccharide; O-Antigen; 2-Amino-1,3-propanediol

Certain *Escherichia coli* serogroups may cause an illness that resembles bacillary dysentery. These strains have been classified as enteroinvasive *E. coli* (EIEC) and cause diarrhoea. The *E. coli* O143 belongs to this group [1]. Strong cross-reactivity between *Shigella boydii* type 8 and *E. coli* O143 has been reported [2]. In order to investigate the possible basis of this cross-reactivity and the structure of the O-antigenic polysaccharide from the pathogenic *E. coli* O143, we have performed structural studies which we report here.

The lipopolysaccharide from *E. coli* O143 was delipidated under mild acidic conditions and purified by gel permeation chromatography to give a polysaccharide. Component analysis of the polysaccharide showed 2-amino-1,3-propanediol, D-glucosamine, D-galactosamine, D-glucuronic acid, and D-galacturonic acid. Sugar components considered to derive from the core of the LPS were also found. The 1H and ^{13}C NMR spectra of the polysaccharide showed the presence of *O*-acetyl groups, inter alia, at δ_C 20.9 and 21.5. The native O-antigen polysaccharide was subsequently *O*-deacetylated by dilute NaOH (aq). The 1H NMR spectrum of the *O*-deacetylated polysaccharide showed the presence of four signals in the anomeric region (Fig. 1). The presence of four sugars

^a Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden

b Karolinska Institute, Department of Immunology, Microbiology, Pathology and Infectious Diseases, Division of Clinical Bacteriology, Huddinge University Hospital, S-141 86 Huddinge, Sweden

^{*} Corresponding author.

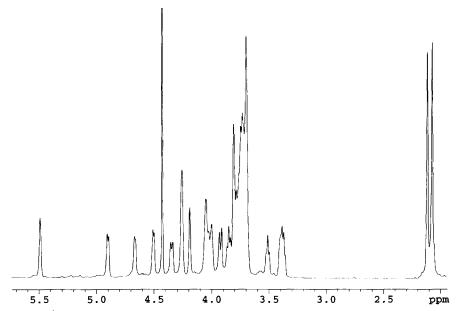


Fig. 1. The ¹H NMR spectrum at 600 MHz of the *O*-deacetylated *E. coli* O143 O-antigen polysaccharide.

in the repeating unit was corroborated by the 13 C NMR spectrum where signals were observed at $\delta_{\rm C}$ 97.6, 101.8, 103.4, and 103.6. The amino sugars are *N*-acetylated as signals were observed at $\delta_{\rm H}$ 2.07 (3 H), 2.11 (3 H), $\delta_{\rm C}$ 23.1, 23.4, 174.6, and 175.4. The 13 C NMR spectrum showed in total 31 signals, in agreement with equimolar amounts of the five components described above. Values of $^{1}J_{\rm C,H}$ and $^{3}J_{\rm H,H}$ for the anomeric protons and 13 C NMR chemical shifts show that the sugar residues in the polysaccharide are pyranoid. The 13 C NMR spectrum also showed signals from an amide-linked carbonyl group (170.9 ppm), a carboxylic acid group (175.6 ppm), and three nitrogen-carrying carbons (48.9, 53.2, and 55.5 ppm), and four signals deriving from hydroxymethyl groups (61.3, 61.4, 61.6, and 61.8 ppm).

The ¹H and ¹³C NMR spectra of the polysaccharide were completely assigned using one-dimensional (1D) ¹H, ¹H TOCSY experiments and 2D ¹H, ¹H COSY, relayed ¹H, ¹H COSY, double-relayed ¹H, ¹H COSY, ¹H, ¹H NOESY, ¹H, ¹³C gHSQC, and ¹H, ¹³C HMBC experiments. The assignments of NMR signals to the components of the polysaccharide are based on ³J_{H,H} couplings, ¹H and ¹³C chemical shifts, and chemical shift displacements due to glycosylation, and are given in Table 1, where the sugar residues are labelled from **A**–**D** with respect to the decreasing chemical shift of their anomeric protons. From J_{H-1,H-2} couplings residue **A** is α -linked and residues **B**–**D** are β -linked. Residues **A** and **B** could be assigned to amino sugars because of the chemical shifts of their C-2 signals. From ³J_{H,H} couplings and chemical shifts **A** is the D-Gal pNAc residue and **B** is the D-Glc pNAc residue. Both are 3-substituted since large downfield ¹³C chemical shift displacements ($\Delta \delta_C \sim 10$ ppm) due to glycosylation are observed. In a similar manner **C** could be assigned to a β -linked 2-substituted Gal pA

$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
		2	2 3 4 5	4	l	9	NAc	NAc CO I'	<u>`</u> _	2,	3,
	5.49 (3.3) 7.6 [180]	4.35	4.04	4.26	4.00	5.49 (3.3) 4.35 4.04 4.26 4.00 3.73, 3.76 2.11 97.6 [180] 48.9 78.6 69.4 71.0 61.6 23.4	23.4	174.6			
	(8.2)	3.85	3.75	3.51	3.40	3.73,3.92	2.07				
B 101.8	101.8 [166] 55.5 83.5 69.6 76.2	55.5	83.5	9.69	76.2	8.19		175.4			
\rightarrow 2)- β -D-Gal pA6NHCH(CH,OH);-(1 \rightarrow 4.6	1.66 (7.3)	3.77	3.79		4.25				~ 3.7	4.05	
	103.4 [165]	77.4	74.6	70.1	75.3	170.9			61.3 5	53.2	61.4
$\rightarrow 4)-\beta-\text{D-Glc }pA-(1 \rightarrow 4.5)$	4.50 (7.9)	3.38	3.71	3.81	3.81						
D 103.6	1.6 [163]	74.0	74.0 77.2	76.1	77.4	175.6					

 $^{a}J_{\rm H\,I,H-2}$ values are given in Hz in parentheses and $J_{\rm H\,I,C-1}$ values in Hz in square brackets.

Table 2
Intra-residue and inter-glycosidic correlations from the anomeric atoms observed in the HMBC spectrum of the *O*-deacetylated *E. coli* O143 O-antigen polysaccharide

Sugar residue	Anomeric atom Connectivity to		Residue, atom		
	$\delta_{\rm H}$	δ_{C}	$\delta_{ m C}$	δ_{H}	
\rightarrow 3)- α -D-Gal pNAc-(1 \rightarrow	5.49		78.6		A, C-3
A			76.1		D , C-4
			71.0		A, C-5
		97.6		3.81	D, H-4
\rightarrow 3)- β -D-Glc p NAc-(1 \rightarrow	4.90		77.4		C, C-2
В			76.2		B, C-5
		101.8		3.85	B , H-2
				3.77	C, H-2
→ 2)- β -D-Gal pA6NHCH(CH ₂ OH) ₂ -(1 →	4.66		78.6		A , C-3
C		103.4		4.25	C, H-5
				4.04	A , H-3
				3.77	C, H-2
\rightarrow 4)- β -D-Glc p A-(1 \rightarrow	4.50		83.5		B , C-3
D			77.4		D , C-5
			74.0 D , C-2		
		103.6			
		B, H-3			

residue and $\bf D$ to a β -linked 4-substituted D-Glc pA residue. The 2-amino-1,3-propanediol moiety is amide-linked to C-6 of the galacturonic acid residue $\bf C$, as is evident from correlations in the HMBC spectrum from H-2', $\delta_{\rm H}$ 4.05, to C-6, $\delta_{\rm C}$ 170.9. Heteronuclear correlations within the 2-amino-1,3-propanediol moiety were also observed from C-2', $\delta_{\rm C}$ 53.2, to hydroxymethyl protons, $\delta_{\rm H} \sim 3.7$, and from C-1' and C-3', $\delta_{\rm C}$ 61.3 and 61.4, to H-3' and H-1' hydroxymethyl protons, respectively. It can be noted that the signals for H-4 and H-5, $\delta_{\rm H}$ 3.81, in residue $\bf D$ overlap extensively.

The sequence of sugar residues in the polysaccharide was determined by ¹H, ¹H NOESY and ¹H, ¹³C HMBC experiments. In the spectra from the ¹H-detected HMBC experiment one can observe both intra- and inter-residue correlations from the anomeric protons as well as the anomeric carbons (Table 2). The 3-substituted 2-acetamido-2-de-oxygalactopyranose residue, **A**, shows a three-bond correlation from the anomeric proton over the glycosidic linkage to C-4 of the 4-substituted glucuronic acid residue, **D**. This fact and the long-range correlation from C-1 in **A** to H-4 in **D** demonstrate structural element **1**:

$$\rightarrow$$
3)- α -D-GalpNAc-(1 \rightarrow 4)- β -D-GlcpA-(1 \rightarrow
A D

1

Sugar residue	Anomeric proton	NOE to proton	Residue, atom	
	δ_{H}	δ_{H}		
\rightarrow 3)- α -D-Gal pNAc-(1 \rightarrow	5.49	4.35	A, H-2	
A		3.81	D , H-4	
\rightarrow 3)- β -D-Gle pNAc-(1 \rightarrow	4.90	~ 3.76	C, H-2/B, H-3	
В		3.40	B , H-5	
\rightarrow 2)- β -D-Gal pA6NHCH(CH $_{2}$ OH) $_{2}$ -(1 \rightarrow	4.66	4.25	C, H-5	
C		4.04	A, H-3	

3.79

3.81 - 3.71

C, H-3

D, H-5/**B**, H-3/**D**, H-3

Table 3
Intra-residue and inter-glycosidic NOEs from the anomeric protons of the *O*-deacetylated *E. coli* O143
O-antigen polysaccharide

One inter-residue NOE from the NOESY experiment (Table 3), between H-1 in residue A and H-4 in residue D, confirms structure 1 above.

4.50

 \rightarrow 4)- β -D-Gle pA-(1 \rightarrow

D

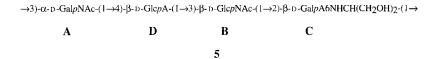
The 4-substituted glucuronic acid residue, **D**, is linked to the 3-substituted 2-acetamido-2-deoxyglucopyranose residue, **B**, as is evident from three-bond correlations from H-1 and C-1 in **D** to C-3 and H-3 in **B**, respectively, as well as an inter-residue NOE between H-1 in **D** and H-3 in **B**, giving partial structure **2**:

$$\rightarrow$$
4)- β - D-Glc p A-(1 \rightarrow 3)- β - D-Glc p NAc-(1 \rightarrow

D

B

Inter-residue correlations from the HMBC spectrum between H-1 in the 3-substituted 2-acetamido-2-deoxyglucopyranose residue, **B**, and C-2 in the 2-substituted galacturonic acid residue, **C**, and between C-1 and H-2 of the same residues define, together with an observed NOE between H-1 in **B** and H-2 in **C**, structure element 3:

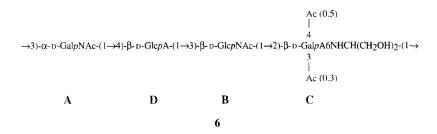

→3)-
$$\beta$$
-D-Glc p NAc-(1→2)- β -D-Gal p A6NHCH(CH2OH)2-(1→BC3

The 2-substituted galacturonic acid residue, C, shows inter-residue three-bond correlations from its H-1 and C-1 to C-3 and H-3, respectively, in A, that is, the 3-substituted

2-acetamido-2-deoxygalactopyranose residue. An NOE between H-1 in C and H-3 in A was also observed. Structure element 4 is thus defined as follows:

→2)-
$$\beta$$
-D-GalpA6NHCH(CH₂OH)₂-(1→3)- α -D-GalpNAc-(1→
$$\mathbf{C} \qquad \qquad \mathbf{A}$$

Thus, it is concluded that the structure of the *O*-deacetylated O-antigen polysaccharide from *E. coli* O143 is composed of tetrasaccharide repeating units having structure 5:



2-Amino-1,3-propanediol amide-linked to a D-galacturonic acid residue also occurs in the O-antigen polysaccharide from *S. boydii* serotype 8. By comparison of the above structure 5 with that of the O-antigen polysaccharide of *S. boydii* serotype 8 [3] it is concluded that the O-antigen polysaccharides from *E. coli* O143 and *S. boydii* serotype 8 have the same polysaccharide backbone. The *S. boydii* serotype 8 O-antigen polysaccharide was also shown to carry *O*-acetyl groups on positions 3 and 4 of the galacturonic acid residue.

The ¹³C NMR spectrum of the native O143 polysaccharide showed the presence of O-acetyl groups, with signals at δ_C 20.9 and 21.5 as well as a signal at δ_C 67.5. Chemical shift displacements upon O-acetyl substitution of sugars have been investigated [4]. These were used for the determination of the O-acetyl substitution pattern of the native O143 polysaccharide. The signal at δ_C 67.5 is assigned to C-4 of the galacturonic acid residue upon O-acetyl substitution of position 3 of the same residue. In agreement with this a signal was observed in the 1 H NMR spectrum at $\delta_{\rm H}$ 4.99 (0.3 H) assigned to H-3 as well as a signal at $\delta_{\rm H}$ 4.36 (not integrated) assigned to H-4. Thus, the galacturonic acid residue carries 0.3 mole O-acetyl group per repeating unit at position 3; O-acetyl substitution also occurs at position 4 of the same residue, since signals occur, inter alia, at $\delta_{\rm H}$ 5.52 (0.5 H) assigned to H-4 and at $\delta_{\rm H}$ 4.40 (0.5 H) assigned to H-5. A signal occurs at $\delta_{\rm H}$ 4.19 (0.2 H) for the non-substituted form and is assigned to H-4 of the galacturonic acid residue (cf. Table 1) which corroborates the above assignments. Thus, the galacturonic acid residue carries 0.5 mole O-acetyl group per repeating unit at position 4. The ¹H NMR signals in the region of acetyl groups are in agreement with the above data and occur at $\delta_{\rm H}$ 2.28 (0.9 H) for 3-OAc, 2.15 (1.5 H) for 4-OAc, 2.11 (3.0 H) for NAc of galactosamine, 2.07 (2.1 H) for NAc of glucosamine being non-substituted or having a 4-OAc group at the galacturonic acid residue, and 2.00 (0.9 H) for NAc of glucosamine having a 3-OAc group at the galacturonic acid residue.

The signals at δ_C 21.5 and 20.9 could consequently be assigned to 3-OAc and 4-OAc, respectively.

The structure of the O-antigen polysaccharide from *E. coli* O143 is composed of tetrasaccharide repeating units containing 0.8 mole *O*-acetyl group per repeating unit, located on the galacturonic acid residue. The complete structure of the repeating unit of the O-antigen polysaccharide is given by structure **6**:

The strong cross-reactivity between *S. boydii* type 8 and *E. coli* O143 can consequently be explained be their identical O-antigen polysaccharides.

1. Experimental

General methods.—Concentrations were performed under diminished pressure at < 40 $^{\circ}\text{C}$ or under a stream of N_2 or air. For GLC a Hewlett–Packard 5890A instrument fitted with a flame-ionisation detector was used with HP-5 and DB225 capillary columns. GLC–MS was performed on a Hewlett–Packard 5890-5970 instrument equipped with an HP-5-MS capillary column.

Component analysis.—Hydrolysis of polysaccharide material was performed with 2 M CF₃CO₂H at 120 °C for 2 h. The sugars were then converted into alditol acetates and analysed by GLC and GLC-MS (EI). Determination of the absolute configurations of the sugars was performed essentially as described by Leontein et al. [5] by GLC of their glycosides, using optically active 2-butanol [6].

NMR spectroscopy.—NMR spectra of solutions in D_2O were recorded at 70 °C for the native polysaccharide and at 62 °C for the O-deacetylated polysaccharide on JEOL GSX-270, Varian Unity+ 400, and Varian Unity+ 600 spectrometers. Chemical shifts are reported in ppm relative to sodium 4,4-dimethyl-4-sila(2,2,3,3- 2H_4)pentanoate (δ_H 0.00) and acetone (δ_C 31.00) as internal references. Chemical shifts were obtained from 1D spectra when possible. Assignments were obtained from 1D proton–proton TOCSY experiments [7] with mixing times of 30, 70, 100, and 140 ms, using a selective E-BURP-2 pulse [8] of duration 115 ms, 2D proton–proton-correlated spectroscopy (COSY), relayed COSY, double-relayed COSY, and gradient-enhanced 13 C-decoupled inverse 1 H-detected 1 H, 13 C heteronuclear single quantum coherence (HSQC) experiments [9]. Relayed COSY spectra were performed using a delay time of 30 or 60 ms. For sequential information, two-dimensional nuclear Overhauser effect (NOESY) exper-

iments, using mixing times of 150 and 350 ms, and a heteronuclear multiple-bond connectivity (HMBC) [10] experiment with a delay time of 50 ms were performed.

Bacterial strain.—E. coli O143:K⁻:H⁻ (CCUG 11443) was obtained from the Culture Collection, University of Göteborg, Sweden.

Isolation and purification of the O-polysaccharide.—E. coli O143 bacteria were grown in TY medium (30 L) in a fermentor (Belach, Sweden) at 37 °C and constant pH (7.1). Bacteria were killed by the addition of formaldehyde (1% final concentration) and harvested by centrifugation. Lipopolysaccharide (LPS) was extracted by the hot phenol—water method [11]. The LPS was treated with aq 1% AcOH at 100 °C for 1 h. Liberated lipid A was centrifuged off, and the supernatant solution was neutralised and subsequently lyophilised. The product was further purified by column chromatography on a column (2.6×90 cm) of Bio-Gel P-2. O-Deacetylation of the polysaccharide was performed using 0.1 M NaOH (aq) for 16 h at room temperature.

Acknowledgements

This work was supported by grants from the Swedish Natural Science Research Council and the Swedish Agency for Research Cooperation with Developing Countries (SAREC).

References

- [1] R.J. Gross and B. Rowe, J. Hyg., 95 (1985) 531-550.
- [2] F. Ørskov and I. Ørskov, Methods Microbiol., 14 (1984) 43-112.
- [3] V.L. L'vov, N.V. Tokhtamysheva, A.S. Shashkov, B.A. Dmitriev, and N.K. Kochetkov, *Bioorg. Khim.*, 9 (1983) 60-73.
- [4] P.-E. Jansson, L. Kenne, and E. Schweda, J. Chem. Soc., Perkin Trans. 1, (1987) 377-383.
- [5] K. Leontein, B. Lindberg, and J. Lönngren, Carbohydr. Res, 62 (1978) 359-362.
- [6] G.J. Gerwig, J.P. Kamerling, and J.F.G. Vliegenthart, Carbohydr. Res., 77 (1979) 1-7.
- [7] H. Kessler, H. Oschkinat, and C. Griesinger, J. Magn. Reson., 70 (1986) 106-133.
- [8] H. Geen and R. Freeman, J. Magn. Reson., 93 (1991) 93-141.
- [9] W. Willker, D. Leibfritz, R. Kerssebaum, and W. Bermel, Magn. Reson. Chem., 31 (1993) 287-292.
- [10] M.F. Summers and A. Bax, J. Am. Chem. Soc., 108 (1986) 2093-2094.
- [11] O. Westphal, O. Lüderlitz, and F. Bister, Z. Naturforsch., 7 (1952) 148-155.